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Abstract: The association of elevated rail structures and Maglev (magnetic levitation) trains is a
promising alternative for urban transportation. Besides being cost-effective in comparison with
underground solutions, the Maglev technology is a clean and low-noise mass transportation. In this
paper, we propose a low-cost automatic braking system for Maglev trains. There is a myriad of sensors
and positioning techniques used to improve the accuracy, precision and stability of train navigation
systems, but most of them result in high implementation costs. In this paper, we develop an affordable
solution, called Redundant Autonomous Safe Braking System (RASBS), for the MagLev-Cobra train,
a magnetic levitation vehicle developed at the Federal University of Rio de Janeiro (UFRJ), Brazil.
The proposed braking system employs GNSS (Global Navigation Satellite System) receivers at the
stations and trains, which are connected via an ad-hoc wireless network. The proposed system uses a
cooperative error correction algorithm to achieve sub-meter distance precision. We experimentally
evaluate the performance of RASBS in the MagLev prototype located at the campus of UFRJ, Brazil.
Results show that, using RASBS, the train is able to dynamically set the precise location to start the
braking procedure.

Keywords: MagLev-Cobra; GNSS; safe braking system; cooperative positioning

1. Introduction

Intelligent Transportation Systems (ITS) have attracted significant attention from the industry
and academy with the appearance of new vehicular communication standards. There is a huge
diversity of possible data that can be acquired from the multiple sensors available in this ecosystem.
An example is information on the location and speed of vehicles, obtained using GNSS (Global
Navigation Satellite System) receivers. Additionally, vehicles have become able to communicate
with each other (Vehicle-to-Vehicle or V2V communications) and with fixed infrastructure alongside
roads and streets (Vehicle-to-Infrastructure or V2I communications), by using IEEE 802.11p or cellular
networks [1]. These conditions create an environment which is suitable for the development of many
applications, ranging from autonomous and safe driving to entertainment.

ITS aim at improving the efficiency of the transportation services, providing more reliable traffic
management and lower operational costs. In this sense, various active safety applications have been
developed, for instance forward collision warning, risky overtaking warning and hard braking warning
systems, which are considered active safety applications because they cooperatively avoid collisions.
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This idea contrasts with passive devices, such as airbags and safety belts, which can only minimize
physical and material damages, but cannot avoid them [2]. Another possible application for vehicular
networking is autonomous driving [3]. Nevertheless, it poses harsh requirements and challenges.
In this case, a seamless communication between vehicles and infrastructure is essential to guarantee a
safe transportation. With the use of GPS monitoring and dedicated networks, it is possible to provide
a safe environment where vehicles can operate autonomously with minimized risks.

GNSS train positioning systems have gained significant attention by the railroad industry and
academia due to the precision and reliability improvements to estimate speed and distance of modern
GNSS receivers. Nevertheless, standard receivers cannot precisely identify locations in their trajectories
because of the signal reflections on metal structures [4], demanding train navigation systems to
be equipped with various sensors, such as Doppler radars, DGPS (Differential Global Positioning
System), RFID (Radio Frequency Identification), INS (Inertial Navigation System) and tachometers.
This diversity of sensor devices and positioning techniques ensures high accuracy, high precision and
stability of train navigation system, being, however, very costly [5].

In this work, we develop an autonomous redundant braking system for the MagLev-Cobra train,
which is a public transportation system based on magnetic levitation [6]. The MagLev-Cobra train
already has an autonomous safe braking system composed of two stages. The first, which is the focus
of this work, is responsible for determining the moment when the vehicle reaches a previously set safe
distance at which the electric brake must actuate before reaching the next station. The second stage
receives the control signal from the first and generates a constant slowdown, forcing the vehicle to
obey a linear decay speed ramp until it reaches the station. The goal is to safely stop the train along the
platform at the correct position at the railway station. Since this operation is highly sensitive, it cannot
rely on a single braking system, requiring redundancy.

Currently, a high precision laser technology which detects the distance to the next station is under
development for the main braking system of the MagLev-Cobra train. The Redundant Autonomous
Safety Braking System (RASBS) proposed in the present work is a second system that acts in case
of failure of the first one, improving the reliability of the whole system and the safety of the vehicle.
RASBS uses three GNSS receivers inside three positioning modules. These modules, located inside the
train and the previous and next stations, communicate via an ad hoc wireless network to cooperatively
compute the safe braking distance with a high precision, overcoming the limited precision of the GNSS
in its single point mode operation. The performance of RASBS is evaluated through experiments in the
MagLev-Cobra prototype vehicle (Figure 1), installed in the campus of the Federal University of Rio de
Janeiro (UFRJ), Brazil. The three RASBS modules installed in its stations and inside the train execute
an algorithm which achieves a sub-meter distance precision, using the real distance between the train
stations as the basic reference to adjust GNSS positional data. RASBS does not employ augmentation
systems or additional sensors, only using GNSS receivers operating in single-point mode and wireless
communications. It is, thus, less costly than similar proposals: the implementation presented here
had an approximated cost of 887.00 USD. Even with less equipment, the performance evaluation has
shown that RASBS is able to achieve sub-meter precision, attaining state-of-the-art performance and
meeting the requirements for the safe braking application of the MagLev-Cobra train.

This paper is organized as follows. Section 2 presents related work. Section 3 introduces RASBS,
focusing on the design of each module and their interaction. Section 4 presents the algorithm used
to minimize the influence of the GPS update rate on the error of the calculated distance between the
vehicle and the next station. Experimental results with the MagLev train are presented at Section 5.
Finally, Section 6 concludes the paper and investigates future work.
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Figure 1. MagLev-Cobra prototype (Source: [7]).

2. Related Work

With the advent of Global Navigation Satellite Systems (GNSS), such as GPS, train positioning
and speed evaluation systems have an additional cost-effective technology option. An inexpensive
GPS-based train control system for secondary lines was proposed by Yamamoto et al. [8] to
provide continuous positioning and speed control. To improve the GPS positioning reliability,
they use the augmentation system MSAS (MTSAT Satellite-based Augmentation System) to correct
malfunction-related data orbital errors, clock errors, and ionosphere time-delay errors. The authors
used a low-cost standard SBAS (Satellite-based augmentation system) receiver jointly with GPS to
achieve positioning errors under 2 m when the vehicle is running under open sky.

To improve safety and reliability, Liu et al. [9] presented a scheme for the integrity assurance
of a GNSS-based train integrated positioning system. The proposed scheme collects data from
various sensors, e.g., GNSS receiver, accelerator, gyroscope, and odometer and checks their integrity
through a data fusion filter and a map matching algorithm. According to the authors, this scheme
provides sensor fault detection, fault diagnosis, and isolation, which are necessary for a safety system.
Another approach that uses a cooperative algorithm is presented by Roth et al. [10]. The authors
ensure that the algorithm enables adjustment of GNSS pseudorange measurements coming from
collaborating vehicles in the communication range, in order to use them for self-localization. The result
is an improvement of positioning precision, mitigating the problem of satellite unavailability for
urban environments.

The aforementioned related work differs from the present proposal, since it employs no
augmentation system or additional sensor. RASBS only uses GNSS receivers working in single-point
mode. With respect to the cooperative algorithm, our proposal is based only on wireless
communications between train and stations. Even at such conditions, RASBS has been able to reach a
sub-meter precision, achieving state-of-the-art performance with lower costs.

3. Redundant Autonomous Safe Braking System

The proposed Redundant Autonomous Safe Braking System (RASBS) is a secondary braking
system for the MagLev-Cobra levitation vehicle. The objective of RASBS is the safe positioning
of the train in the platform, based on a safe braking distance estimation. It is worth noting that,
although applied to a train, the design of the system could be adapted to other vehicles and situations,
e.g., autonomous cars or buses.
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3.1. System Description

RASBS determines the distance to the next station using static and dynamic positioning
procedures. The static one is carried out by all the system modules in a cooperative fashion. To perform
it, stations exchange their coordinates and perform an error correction algorithm. The next station
sends both its and its predecessor’s coordinates, plus the computed correction factor to the vehicle,
which will use this received information jointly with GNSS data to determine its position. The dynamic
positioning procedure is performed only by the train while it is moving, to compensate for the GNSS
update rate.

Figure 2 illustrates our application scenario. When it is determined that the train is between
Stations K−1 and K, the correction factors associated with DA, as well as the stations coordinates,
are sent to the vehicle by Station K. As soon as the train crosses Station K, the vehicle starts to cooperate
with the pair (Station K, Station K + 1), receiving the correction information from Station K + 1.

Figure 2. Application scenario.

Figure 3 presents the components of each module, as well as the flow of information between
their components, represented by directed arrows. The Previous Station and Next Station Modules
exchange data between themselves, while the Train Module may receive data from both stations.
When the safe braking distance is reached, the Vehicle Controller enables a control voltage to activate
the brake control signal and plays a beep sound as a warning.

Figure 3. Architecture of RASBS.

3.2. RASBS Positioning Design

GNSS are based on constellations of satellites that send their orbital positions to receivers on
Earth, providing geographic position and high precision time. The position accuracy is variable,
depending on weather conditions, visibility, and availability of the satellites, as well as on the reflection
of signals. Currently, two navigation systems are operational: American GPS and Russian GLONASS.
Although under control of their respective governments, both provide free of charge data with global
coverage. The position can be determined by a single receiver (single point) or by two receivers
working in differential mode (DGPS). The former mode, under ideal conditions, provides an accuracy
around 5 m. The latter, with the support of a known geographic position from a ground station,
can achieve millimeter precision [11].



Information 2020, 11, 531 5 of 13

For our implementation, the American GPS was chosen. However, the same approach
could be employed with GLONASS. Therefore, the terms GPS and GNSS will henceforth be used
interchangeably as synonyms.

The engineering team of MagLev-Cobra has defined an accuracy requirement lower than 1 m
for the train positioning in the redundant braking system. The sub-meter accuracy is a major design
challenge, considering the use of a single point GNSS as the distance information source to calculate
the safe braking distance, given its standard accuracy of around 5 m.

At each point, 10 samples were collected; their means are plotted on Figure 4a. The green
line represents the correct distance to CT2 and the red points are the respective GPS measurements.
We observe that all GPS measures are under the green line, signaling a uniform error behavior,
confirmed by Figure 4b. Using trial and error, small increments were equally added to the longitude
and latitude until the Root Mean Square Error (RMSE) of the samples reached the minimum value.
The correspondent increment, named GPSDelta, was applied to all measures, resulting in the corrected
positions in Figure 4c. This demonstrates a significant error reduction, as plotted in Figure 4d.
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(c) Distances with correction.
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(d) Error with correction.

Figure 4. GPS static measures versus real distances along MagLev-Cobra railway track.

After acquiring the exact MagLev-Cobra railway track dimensions (Figure 5), two GNSS devices
were installed at each train station (stations are named CT1 and CT2) and a series of static GPS distance
measurements was carried out, beginning at the CT2 station. Reference measures were made every
10 m, using a measuring tape (Figure 5). The primary goal of this experiment was to measure the real
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distances between CT1 and CT2 and between CT2 and every track point. The Haversine formula [12]
was employed to calculate the distance between CT2 Station and every track point.

Figure 5. Experimental MagLev-Cobra railway track.

3.3. GPSDelta Determination

As observed in the previous section, adding the GPSDelta value to a GPS measurement yields
measures closer to the real position. Therefore, to automate its computation and guarantee the Root
Mean Square Error (RMSE) convergence to a minimum value, a local search algorithm has been
employed. For that, a search interval must be fixed. Nevertheless, if the search interval is too large,
a major computational effort will be required. An alternative is to use the maximum distance error of
each sample group as a first choice. For example, using the data of Figure 4, the maximum error is 6.13 m
(Figure 4b), corresponding to 3.9× 10−5 degrees, which is the boundary of the interval. Therefore,
the GPSDelta determination routine must execute a loop in the interval −3.9× 10−5 to +3.9× 10−5

degrees with steps of 1.0× 10−6 degrees, equivalent to 15 cm steps. At each iteration, GPS coordinates
are incremented by the present loop value, computing the RMSE for all samples. The adjustment
related to the smaller RMSE produces GPSDelta. To minimize the computational effort, the interval
is calculated by multiplying the greatest sample error (maxError) by a factor proportional to GPS
precision named Horizontal Dilution Of Precision (HDOP), provided by the GPS receiver and given by:

HDOP =
√

sx2 + sy2, (1)

where sx and sy are normalized standard deviations of the horizontal coordinates X and Y [13].
Considering that a smaller HDOP results in a smaller coordinate position error, the search interval is
[−maxError ∗ HDOP,+maxError ∗ HDOP].

3.4. Hardware Description

RASBS modules installed in MagLev-Cobra have their own GNSS receivers to provide time and
location data used to perform a cooperative precision positioning system, managed by the controllers
described later. The hardware devices that integrate the RASBS modules are shown in Table 1.
The U-Blox EVK-7P kit, installed in the previous and next stations, operates in single-point mode
with a 1 Hz update rate, while the GNSS receiver installed in the vehicle also operates in single-point
mode, but with a 4 Hz update rate. The wireless interface is compliant with the IEEE 802.11n standard
and runs in ad hoc mode, transmitting at 20 dBm. All controllers employ the Raspbian v7 operating
system. For pairs of stations that are more distant from each other than the ones considered here, it is
necessary to evaluate the performance of the wireless interfaces, to verify whether they would suffice
and whether any adjustment on their parameters would be necessary, such as the transmission power.
Such evaluation would consider network performance metrics, such as latency, packet delivery rate,
and packet inter-reception time.
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Table 1. RASBS hardware description.

Device Description

GNSS Receiver U-Blox EVK-7P kit

WiFi Interface TP-LINK TL-WN722N

Controllers Raspberry Pi Model B+ v1.2

4. RASBS Operation

The controllers are the core of RASBS. They continuously exchange data to detect coordinate
variations, which may happen due to changes of environmental conditions. The reason for installing
one GPS device in each train station is justified by the fact that the estimated distances between CT1
and CT2, calculated by the GPS coordinates, vary significantly during a 24-h cycle. Figure 6a indicated
that the GPSDelta variation during a day can be as high as 1.2× 10−4 degrees, which is equivalent to
18.9 m. Executing a periodic evaluation of the distance between stations guarantees the best GPSDelta
values according to the up-to-date environment conditions. RASBS controllers exchange data through
the wireless ad-hoc network presented in Figure 3. All transmissions are unicast.

To assess the RASBS performance in the real-life MagLev-Cobra experimental project, where
only two stations exist, the following scenario was adopted: the module installed at the CT1 station
only sends its coordinates to the module installed at the CT2 station, which executes Algorithm 1.
The reason of this choice was to prove the RASBS performance with minimal resources.

4.1. CT1 Controller Description

The CT1 controller receives the NMEA raw sentences GPRMC (Recommended Minimum Specific
GPS/TRANSIT Data) and GPGSA (GPS DOP and Active Satellites) [14] from the local GPS receiver at
a 1 Hz update rate and converts the following data to float numbers:

• Latitude—latitude of CT1 station, in decimal degrees;
• Longitude—longitude of CT1 station, in decimal degrees;
• Time—UTC time provided by GPS satellite, given in the format HH:MM:SS;
• PDOP— Position Dilution Of Precision, provided by GPS receiver;
• HDOP—Horizontal Dilution Of Precision, provided by the GPS receiver.

After receiving valid data from the GPS receiver, the controller opens a socket connection with
the CT2 station controller and sends all the fields received from the GPS, plus a message counter and a
local epoch time, to keep track of the packet loss and the delay. This process is executed periodically,
at a transmission rate of approximately one packet per 1.2 s.

4.2. CT2 Controller Description

The CT2 controller executes the basic positioning functions. It receives the same raw sentences of
the CT1 controller from the local GPS receiver. After receiving a message with valid GPS data, the CT2
controller opens a socket to receive data from CT1 controller, which will be used to compute the distance
between the two stations using Haversine formula and executing Algorithm 1. In short, the algorithm
operates as follows. The CT2 controller receives GPS data from its receiver and from the CT1 controller,
and calculates the distance between the stations based on these coordinates. At every 50 sets of
locations and distances, the local search discussed on Section 3.3 is executed to find the GPSDelta
which yields the minimal RMSE. This value is then sent to the Vehicle Module. This procedure repeats
itself as long as the CT2 controller is operating.
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Algorithm 1: CT2 MODULE PROCEDURE.
Input: CT1 Coordinates, Local GPS Coordinates
while true do

count← 0
while count ≤ 50 do

CT2coord[count], HDOP[count]← Acquire GPSdata()
CT1coord[count]← Receive TCPport()
dist[count]← computeDist(CT2coord[count], CT1coord[count])
count++

end
searchInterval ← getSearchInterval(HDOP) rmse← ComputeRSME(dist)
GPSDelta← ComputeGPSDelta(rmse)
Send data to train
send mean(CT1location, CT2location)
send GPSDelta

end

4.3. Vehicle Controller Description

The main function of RASBS is performed by the Vehicle Controller (Figure 3),
executing Algorithm 2. While the vehicle is at the station, it receives data from the CT2 controller,
which announces both stations coordinates and GPSDelta. The procedure executes in a loop until
the speed exceeds a threshold (set to 1.5 m/s). Based on the updates of the distances to the stations,
the controller determines the vehicle direction and starts a loop to compute the current distance to
the source (DSS) and to the destination (DDS) stations, applying GPSDelta to perform corrections.
The precision of the distance to the destination station after applying GPSDelta remains inside the
confidence interval shown in Table 2, hence a second correction is made to increase the precision.
Based on the assumption that DDS+DSS must be equal to 157.3 m, the distance to the next station
(DNS) is given by:

DNS = DDS + (
DDS

DDS + DSS
) ∗ ErrorST , (2)

where ErrorST = 157.3 − (DDS+DSS).
The value of DNS is computed and compared with the safe braking distance every 250 ms,

the same frequency as the GPS update rate. The MagLev-Cobra experimental prototype has two
different safe braking distances that depend on the vehicle direction. If the train moves towards CT1
station, the safe braking distance is 62 m; towards CT2 station, the distance is 18.5 m, because CT2 is
more elevated than CT1. When DNS reaches the safe braking distance, the Vehicle Controller emits
a warning sound and activates the brake control signal. At low speeds, the 250 ms GPS update rate
causes a small impact in the DNS accuracy, but taking into account that MagLev-Cobra can develop
speeds up to 70 km/h, the error introduced by the GPS update can reach 4.8 m. To compensate this
effect, a dynamic error correction was implemented. The procedure, described in Algorithm 3, uses the
actual vehicle speed data to detect when the time to reach the safe braking distance (tS) is less than or
equal to 250 ms, and applies a tS delay to anticipate the safe braking procedure, instead of waiting for
the next distance evaluation.

Table 2. GPSDelta performance comparison (m).

Distance CT1–CT2 Mean SD 95% C.I.

Without GPSDelta 151.13 3.15 6.18
With GPSDelta 157.31 1.24 2.43
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Algorithm 2: VEHICLE MODULE PROCEDURE.
Input: CT1 and CT2 Coordinates, GPS Coordinates
Open TCP port 5000
Open Serial GPS Port
Vehiclecoord← Acquire GPSdata()
speed← Acquire GPSdata()
CT1coord, CT2coord, GPSdelta← Receive TCPport()
destStation← getDestinationStation(CT1coord, CT2coord)
while speed ≤ 1.5 do

Vehiclecoord← Acquire GPSdata()
speed← Acquire GPSdata()

end
while speed ≥ 1.5 do

Vehiclecoord← Acquire GPSdata()
CT1coord, CT2coord, GPSdelta← Receive TCPport()
speed← Acquire GPSdata()
Compute destination station distance(DNS)

if DNS ≤ sa f eDistance then
Play beep, Activate brake signal
Execute braking sequence

end
else

Execute GPS UPDATE RATE ERROR CORRECTION(Algorithm 3)
end

end

Algorithm 3: GPS UPDATE RATE ERROR CORRECTION.
Input: GPS update rate (tGPS), actual distance (DNS), safe brake distance (Dsa f e), actual speed (v)
Output: Delay until the safe braking procedure (tS)
begin

while true do
∆D ← DNS − Dsa f e
tS ← ∆D/v
if tS ≤ tGPS then

return(tS)

end
end

end

5. Results

First, we assess the accuracy of the automatic GPSDelta calculation. Algorithm 1 was employed
with NbSamples = 50, producing a reasonably small confidence interval. This process runs in an
infinite loop with one iteration every 70 s, approximately. The algorithm was executed during 24 h.
At each iteration, 50 new coordinates are processed and a new GPSDelta is calculated. Figure 6a
indicates the determined values and Figure 6b indicates the RMSE variation. Each V-shaped dotted
line corresponds to the RMSE variation during the search interval corresponding to 50 samples.
Although the CT2 controller sends data at a rate of one packet every 1.5 s to the vehicle controller,
the transmitted values remain unchanged until the next iteration. Figure 6c shows the Probability
Density Function (PDF) of the estimated distance between stations CT1 and CT2 with and without the
GPSDelta correction. Table 2 presents statistical data, including mean, standard deviation, and the 95%
confidence interval of 1500 packets captured from the CT2 Controller to the Vehicle Controller. We can
observe a shift of the CT1–CT2 mean distance to the real distance value (157.3 m) and a significant
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reduction in the standard deviation when GPSDelta is applied. Confidence intervals were calculated
under Student’s t probability distribution area [15].
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Figure 6. RASBS performance evaluation metrics.

Afterwards, in a different day, the performance of the full system was evaluated by experiments
carried out through sixteen round-trips in the MagLev-Cobra train. Figure 7a shows, for a set of trips
from CT2 to CT1, the distance measured between the vehicle and the CT1 station at the moment when
the safe braking mechanism was activated. The Vehicle Controller, then, triggers the GPS update rate
error correction procedure, starting the tS delay. We can observe that trips 7 and 11 did not receive
update rate error corrections due to the fact that tS and tGPS values were very close, resulting on
0.01 and 0.02 m errors, respectively. Figure 7b shows the last seconds before the start of the braking
sequence, in one trip. The distance evaluation events, which occur every 250 ms (the GPS receiver
update rate), are represented by red points, and the green circle indicates the triggering of the error
correction procedure. The distance evaluations of all trips converge to the real value, 62 m, save for
trips 7 and 11. Figure 7c,d show the same behavior for trips in the opposite direction (from CT1 to
CT2). Here, the update rate error correction procedure actuated in every trip. The distance evaluation
converges to the real value, 18.5 m for all trips. Table 3 shows statistical data related to Figure 7a,c,
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demonstrating a good reliability, since the standard deviation and confidence interval values are
below 1 m in both directions, achieving our design requirement. Here confidence intervals were also
calculated under Student’s t probability distribution area [15].

5 10 15

6
2

.0
6

2
.2

6
2

.4
6

2
.6

Trip Number

D
is

ta
n
ce

 (
m

)

(a) Trigger distances for the CT2-CT1
direction.

(s)

(b) Distances in a trip with the
dynamic correction (CT2-CT1).

5 10 15

1
8

.6
1

8
.8

1
9

.0

Trip Number

D
is

ta
n
ce

 (
m

)

(c) Trigger distances for the CT1-CT2
direction.

(s)

(d) Distances in a trip with the
dynamic correction (CT1-CT2).

Figure 7. RASBS safe distance detection performance.

Table 3. Vehicle Controller performance (m).

Direction Mean SD 99% C.I.

CT1 to CT2 18.81 0.16 0.47
CT2 to CT1 62.26 0.19 0.55

6. Conclusions

This work presented the Redundant Autonomous Safe Braking System (RASBS), a novel
cooperative GNSS-based positioning algorithm designed for magnetic levitation trains. It relies on
the cooperation of controllers equipped with GNSS receivers and wireless communication interfaces,
being one controller installed in the vehicle and all the others in train stations. The cooperation always
occurs between the vehicle controller and the controllers of the two stations between which the vehicle
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is moving, via an ad hoc network. By using the distance between them, a known value, as a reference,
the GPSDelta, a correction factor used to adjust the latitude and longitude values, is calculated.
Furthermore, the vehicle controller executes a dynamic correction procedure, ACORE, to compensate
the GPS update rate. Experiments were conducted in the MagLev-Cobra vehicle, located at the campus
of the Federal University of Rio de Janeiro (UFRJ), in Brazil. The obtained results have shown that the
sub-meter specification objective was achieved. Moreover, we have demonstrated that the system can
be deployed in a multiple-station scenario with low hardware and deployment costs. In future works,
we aim to investigate a noise rejection procedure based on Kalman filters to further improve the system
reliability. In addition, we plan to integrate our system with a dead reckoning approach. This will
protect the system against signal losses and would make it more suitable for trains, which have short
covered stretches in their trajectories, such as tunnels.
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