
Vehicular Dead Reckoning Based on
Machine Learning and Map Matching

Lucas de C. Gomes, Student Member, IEEE, and Luı́s Henrique M. K. Costa, Senior Member, IEEE
Universidade Federal do Rio de Janeiro - GTA/COPPE/UFRJ - Rio de Janeiro, Brazil

{gomes, luish}@gta.ufrj.br

Abstract—Global Navigation Satellite Systems (GNSS) are
used today in various contexts as a source of data for several
applications. They provide real-time positioning based on the
transmission of electromagnetic waves from a satellite to a
receiver, being subject to several factors. Some scenarios, such
as canyons (urban or geographic), forests and tunnels, are chal-
lenging, since the coverage in them is unavailable or unreliable,
producing rogue positioning information or no information at
all. Thus, applications that demand high availability usually
employ other sensors. Nevertheless, reducing the amount of such
devices results in lower costs and energy consumption. Aiming to
improve the reliability and availability of GNSS-based systems
retaining cost-effectiveness, this work proposes a dead reckoning
system, using the last known location and sensor data to infer
the current position. The sensors employed here are largely
available in commercial vehicles. We calculate the estimates using
machine learning models and improving the results through
a map matching procedure. The results, based on simulations
with real GNSS and sensor data, indicate that the system is
able to closely reproduce trajectories for over a minute. The
obtained mean error is of approximately 19 meters, suitable
for obtaining approximate locations in scenarios with unreliable
satellite coverage.

Index Terms—Dead reckoning, GNSS, inertial sensors, ma-
chine learning, map matching.

I. INTRODUCTION

Today, geographic positions are an important information
for various applications of our daily lives, such as locating
people, objects or vehicles worldwide, step-by-step navigation
systems (e.g. Waze) and traffic safety applications, such as
collision prevention systems or traffic control systems [1],
[2]. Probably the most common approach to get location
information is using a Global Navigation Satellite System
(GNSS). Nowadays, four of them are in operation: Amer-
ican GPS (Global Positioning System), Russian GLONASS
(Globalnaya Navigatsionnaya Sputnikovaya Sistema, Russian
for Global Satellite Navigation System), European GALILEO
and Chinese BeiDou. These calculate the position of a receiver
in Earth through the propagation time of electromagnetic
waves, sent by one or more satellites to the receiver. Thus,
several environmental and equipment-related factors affect
their performance, such as the atmospheric layers, weather
conditions, reflections on obstacles and inaccuracies on equip-
ment hardware and software.

GNSSs are also subject to coverage losses in certain en-
vironments, such as forests, tunnels, and canyons (urban or
geographic). In these conditions, communications between

satellites and receivers are error-prone, harming or fully stop-
ping the operation of applications that require this information,
depending on the required availability and the duration of
the downtime. For traffic safety applications and autonomous
vehicles, this increases the risk of accidents. These factors
motivate the adoption of additional sensing equipment in some
applications [3]. Nevertheless, reducing the amount of sensors
is convenient: it lowers installation and maintenance costs, the
configuration complexity and the energy consumption.

Seeking to improve the availability of position data with a
low-cost solution, this work proposes a Dead Reckoning (DR)
system which provides real-time location for land vehicles dur-
ing lacks of coverage, keeping the accuracy at adequate levels.
The proposed algorithm estimates the current location based
on the last known position and sensor data. The employed
sensors are already installed in some car models. To relate the
sensor readings to vehicle displacements, Machine Learning
(ML) models for regression and clustering are trained with
data extracted from a real scenario and used to provide esti-
mations. These estimations are adjusted with a map matching
algorithm, in order to improve their accuracy.

This paper is organized as follows. Section II discusses
related work. Section III presents the used equipment, while
Section IV presents our DR algorithm. Section V describes the
data collection procedure and highlights the data set relevant
features. Section VI discusses the obtained results. Finally,
Section VII provides final remarks and discusses future work.

II. RELATED WORK

Different works propose vehicular position estimation meth-
ods under faulty satellite communication.

The step-by-step navigator Waze has integrated the project
Waze Beacons [4], which provides real-time positions and
the possibility of sending alerts inside tunnels. Low-cost mi-
crocontrollers communicate with users’ smartphones through
Bluetooth: positions are estimated through metrics obtained
in the procedure. This project is present in some cities, such
as Haifa (Israel), Chicago (USA) and Rio de Janeiro (Brazil).
Its disadvantage is the requirement of the installation and the
upkeep of a fixed infrastructure.

Belhajem et al. [5] employ an Extended Kalman Filter
(EKF) to predict positions with data from an accelerometer and
a gyroscope. Using only the EKF, errors quickly accumulate.
To compensate, a neural network or a support vector machine,



adjusted by optimization techniques, computes correction fac-
tors. These models are trained and tested with real data,
collected with a moving car. Even with corrections, errors still
accumulate quickly, albeit with a lower intensity. The error
surpasses 100 meters in under a minute. The average error
varies between 23 m and 315 m in the north component and
between 20 m and 304 m in the east component, depending
on the circuit section.

Pinto Neto et al. [6] employ linear regressions as position
estimators. Using wheel rotation frequency sensors, the type
of trajectory is determined and the position is calculated by
the model that was trained with data corresponding to that
type of trajectory. As in [5], the issue is error accumulation,
due to the reuse of past positions and estimates. To avoid it,
a correction factor is dynamically updated and applied. Their
system is tested with real GPS and sensor readings using a
vehicle and a robot. For the vehicle, the mean error is kept
below 5 m for a maximum of 80 seconds. However, after this
duration, the error assumes a rapidly growing behavior.

Ahmed et al. [7] employ yaw rate, speed sensors and an
inertial measurement unit. A particle filter determines the
displacement and matches the estimates with a map that
provides lane-level data. A DR procedure, using the speed
and the yaw rate to calculate the displacement, is used when
a lane change is detected by a high enough yaw rate value.
Only the longitudinal error was evaluated. For this metric, at
the initial 100 m (corresponding to 11.2 s at a mean speed
of 32 km/h), the values are over 10 m, with a maximum of
approximately 90 m. After this stretch, the error is lower than
1 m. This behavior is due to the time the algorithm’s particles
take to converge to more accurate values.

Our proposal shares similarities with these proposals, since
it incorporates ML techniques and a map matching algorithm
and, similarly to [6], it uses a family of regression models, each
one being adjusted for each kind of trajectory. Nevertheless,
the selection of the threshold sensor readings for choosing one
of the models is automatic, operated by a clustering algorithm.

III. EQUIPMENT SETUP

We have used GPS for positioning, although the approach
can be adapted to any GNSS. Our system focuses on land
vehicles, being designed for an OBU (On-Board Unit). In
this paper, we use an off-the-shelf device, Cohda Wireless
MK5 OBU, equipped with wireless communication interfaces,
a GPS receiver and a connection with the CAN (Controller
Area Network) bus, a cable network through which compatible
equipment can access sensors and actuators installed in a
car [8]. The vehicle provides, through CAN, its wheel rotation
frequencies and its speed. As will be shown in the next
sections, in a turn, the left and right wheels’ frequencies differ,
allowing the detection of curves. The speed sensor allows
to determine the movement length, regardless of direction.
Employing only sensors that are available in the vehicle is
cost-effective and independent of external communications,
mitigating scenarios with lacks of coverage. The employed
sensors are available in vehicles equipped with Anti-lock

Table I: Description of the used equipment.

Type Name Important Features
On-Board Unit Cohda Wireless MK5 OBD-2 connector
GPS Receiver U-blox M8N Accuracy: 2.5 m

4 Hz update rate
Vehicle Peugeot 408 (2016) CAN update rate:

(49.9 +/- 0.2) ms

Figure 1: The NED (North-East-Down) model.

Braking Systems (ABS) [9]. Table I lists the equipment
characteristics. The sensors update rate is the average value; its
uncertainty is the standard deviation, obtained by the analysis
of the collected readings, described in the Section V.

IV. METHODOLOGY

The coordinate system used with GNSS receivers, encom-
passing latitude and longitude, does not allow to separately
treat linear and angular displacements. Therefore, we convert it
to the NED (North-East-Down) coordinate system. It measures
positions on a tangent plane in relation to a reference point,
approximating the Earth as flat in a small area, which does
not induce large errors for short distances [10]. Positions are
represented on the horizontal and vertical axes in relation to
the reference, as Figure 1 shows.

The movement of an object from the origin to point A
has a heading angle of θa, components in the east and north
directions, a speed and a duration. The relations between those
elements are:

∆E = V sinθ t, (1)

∆N = V cosθ t, (2)

where ∆E, ∆N , θ and t are, respectively, the differences in
the east and north directions, the direction and the duration.
The speed is obtainable by a sensor and t is the time between
two GNSS updates, i.e., the inverse of the receiver update
frequency. Our goal is to calculate the displacements in each
direction, in order to adjust the last known position. For that,
the heading angle is necessary, requiring two positions. The
scenarios of concern are GNSS-denied environments; directly
obtaining it, thus, is unfeasible. However, we may estimate its
variation through the wheel rotation frequencies:

∆θ = f(frl, frr), (3)

where frl and frr are the rotation frequencies of the rear left
and rear right wheels. Using a Linear Regression (LR), we
approximate it by:

∆θ ≈ afrl + bfrr + c, (4)



Figure 2: Filtering procedures in a trajectory with a turn.

where a, b, and c are determined through the LR via the least
squares method [11]. The new heading angle is obtained by
adding ∆θ to the previous value. As will be seen later, our
data has different amounts of readings for straight lines and
turns. To prevent this imbalance from harming the prediction
of turns, a set of linear regression models was created, one
for each type of reading. Readings are grouped based on the
absolute values of their wheel frequencies, representing dif-
ferent movement types (such as straight lines, light turns and
intense turns); each group is treated by the linear regression
model associated with it. Therefore, each model is fine-tuned
for a type of movement. For dividing the readings, the K-
means clustering algorithm was employed, which finds a set
of clusters with an arbitrary cardinality [11]. We implemented
the initialization criterion k-means++ [12], which finds the set
of centroids that are the most distanced from each other based
on the given data. The exact number of movement types is
investigated in Section VI.

To improve the estimates and limit error accumulation, we
use a map matching (MM) algorithm afterwards. It matches
given geographic positions to a map, yielding corrected ones
on defined stretches, such as streets or highways, close enough
to the given location. Here, we use the open source implemen-
tation of OSRM (Open Source Routing Machine) [13], with
OpenStreetMap [14]. For offline availability, the map of the
region of the field tests and OSRM are locally installed. In
order to avoid inaccurate matches, if there is more than one
possible matching, our estimate is not modified.

Sensor readings are pre-processed by a filter. Since they
are more abundant than positions, as reported in the next
section, we may associate multiple previously received sensor
readings to one position in a cumulative procedure. Thus,
using aggregate calculations (e.g. mean and median), the noise
is reduced. Figures 2 and 3 give examples of filtering in a
turn and in a completely straight stretch. Both filters employ
a sliding window of 5 readings. The median filter produces
smoother variations, being, thus, selected for wheel rotation
frequencies and speeds.

V. DATA COLLECTION AND ANALYSIS

We collected, from a real scenario - the campus of Federal
University of Rio de Janeiro -, positions from a GPS receiver
and wheel frequency and speed values from the CAN bus. For

Figure 3: Filtering procedures in a straight line trajectory.

Table II: Main characteristics of the collected data set.

GPS Reading Count 2107
CAN Reading Count 13614
Total Size 796.8 kB
Features Timestamp (GPS), Timestamp (CAN),

Latitude, Longitude, Left and Right Rear
Wheels Frequencies, Speed

that, the OBU was connected to the vehicle’s OBD-2 connec-
tor and periodically fetched those values while the vehicle
traversed the area. During the procedure, the conditions were
ideal: it was a sunny day of cloudless sky and there was no
obstacles which could induce coverage losses, as the region is
a predominantly open area. Given that atmospheric conditions
and obstacles affect the GPS accuracy, these conditions are the
most adequate to collect data for training our models. Table II
briefly describes the collected data, whereas Figure 4 exhibits
the path using Google Maps. The trajectory has approximately
3.6 km and was traversed counterclockwise, with speeds up
to 51 km/h.

Demonstrating the capability of inferring directions and
intensities of turns, Figure 5 indicates the wheel frequency
differences on the target. Left turns can be identified by nega-
tive values (shades of blue), right turns are deduced by positive
values (shades of red) and straight movements are indicated
by low absolute values (brown). Figure 6 shows heading
variation values. Values lower than −1.5º are displayed in
blue, values greater than +1.5º are represented by red dots
and values between those limits are exhibited in black. This
criterion was employed solely to improve the visualization.
Again, left turns, right turns and straight trajectories are
represented by negative values, positive values and low or null
heading values, respectively. Some colored dots can be seen
in apparently straight stretches: this may indicate lane changes
or GNSS position errors. A visual comparison of both maps
signals the correlation between the heading variations and
wheel frequency differences, which has allowed conceiving
the framework discussed in the previous section.

VI. PERFORMANCE RESULTS

We apply our algorithm to the data described previously.
To verify its robustness to data sets with different features
(such as more turns or longer straight lines), cross-validation,
a procedure commonly used to evaluate ML algorithms, is



Figure 4: Trajectory for the data collection procedure (Source:
Google Maps).

Figure 5: Heat map indicating the wheel frequency differences.

used. The data was split into four sections of consecutive
readings, each having the same size. Three are chosen as
training data - used to adjust the models to the data set,
by calculating a relation between inputs and outputs -; the
remaining one is used as test data: its outputs (geographical
positions) are estimated from its inputs and compared to their
real values. Such division enables four different permutations.
The simulated scenario, for each permutation, is: given the last
position and heading angle before the test section, estimate the
trajectory only with the sensors.

Several configurations in each permutation were analyzed,
by varying the amount of clusters that K-means should find
(nc) and the period of map matches, defined by the amount
of estimates before a new correction (nm). nc and nm were
varied from 1 to 10. The best case is the one with the lowest
mean error: nc = 10 and nm = 10, with a global mean error
of 19.1 m and mean errors of 8.3 m, 8.3 m, 28.9 m, 30.9 m
in Permutations 1, 2, 3 and 4, respectively.

Figure 7 shows the clustering results over the wheel fre-
quency differences of the data set for this case. Figures 8a
to 8d exhibit, for each permutation, the training and test
sections and the predicted trajectory for the test section, for
the best configuration. The training section, the real positions
of the test section and the predicted values are, respectively,
in black, blue and red. Figure 9 shows the error behaviors in
each permutation, for the best configuration. The test section
of Permutation 1 presents the lowest vehicle speeds, as it

Figure 6: Map highlighting the heading variations.

Figure 7: Final clusters after running K-means for 10 clusters.

corresponds to the start of the experiment: as a side effect,
when the vehicle is quasi-stationary, the system suffers more
with GNSS imprecision. The error behavior indicates it grows
over time, although with a low intensity, and is dependent on
the sharpness of turns - more intense turns cause greater errors
- possibly because of the lower amount of readings in turns.
Even without imbalances in the data sets used to train each
linear regression, due to the clustering, more readings lead to a
better model quality. This accumulation is expected and seen in
related work: dead reckoning systems employ recent positions
or estimates; when using estimates, their error is also fed to the
system, leading to its growth over time. The error component
that is perpendicular to the street axis is contained by the map
matching, when it finds the correct matching street. However,
GNSS position shifts have induced inaccurate matches in
Permutations 1, 3 and 4, inducing controlled error increases.
Later, in those cases, correct matches are done, allowing the
system to recover the accuracy. The error is kept below 70
meters after a 140-second lack of coverage in Permutation 4,
a scenario with sharper turns and lower speeds at its end, and
reaches lower maximum values in other scenarios.

VII. CONCLUSION

This paper proposed a cost-effective and self-contained DR
system for vehicles, which only employs sensors already avail-
able on ABS-equipped vehicles. It uses linear regression mod-
els fine-tuned for different movement patterns and corrections



(a) Permutation 1. (b) Permutation 2. (c) Permutation 3. (d) Permutation 4.

Figure 8: Training stretches and comparisons between the real and estimated test sections for each permutation.

(a) Permutation 1. (b) Permutation 2. (c) Permutation 3. (d) Permutation 4.

Figure 9: Position errors in meters for each permutation.

from a map matching algorithm. The estimations hold fidelity
with the real paths taken in every setting. One may observe
that the error accumulation is mostly manageable over a long
period at speeds commonly employed by drivers. Due to this
behavior and the achieved mean error, this system is suitable
for obtaining approximate locations, tracking vehicles, people
or objects and navigation. The accuracy shows improvements
over the levels on [5]. Our system does not need an ”initial
calibration”, during which the error is high until an adequate
improvement on the estimation quality is done, which occurs
in particle filter implementations such as [7], showing our
system is more suitable in scenarios that demand quicker
responses.

Future works will focus on improving the accuracy: we
intend to test other filters for the sensors and adjust the map
matching procedure to include lane-level information, since
our approach adjusts the positions to the streets’ centers in
the axis which is perpendicular to the street; this might have
contributed to the errors and the inaccurate matches seen here.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001, CNPq, FAPERJ, and FAPESP
Grants 15/24494-8 and 15/24490-2.

REFERENCES

[1] J. B. Pinto Neto, L. C. Gomes, E. M. Castanho, M. E. M. Campista, L. H.
M. K. Costa, and P. C. M. Ribeiro, “An error correction algorithm for
forward collision warning applications,” in 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), Nov 2016, pp.
1926–1931.

[2] M. Ferreira, R. Fernandes, H. Conceição, W. Viriyasitavat, and O. K.
Tonguz, “Self-organized traffic control,” in Proceedings of the Sev-
enth ACM International Workshop on VehiculAr InterNETworking, ser.
VANET ’10. New York, NY, USA: ACM, 2010, pp. 85–90.

[3] M.-F. Tsai, Y.-C. Chao, L.-W. Chen, N. Chilamkurti, and S. Rho,
“Cooperative emergency braking warning system in vehicular networks,”
EURASIP Journal on Wireless Communications and Networking, vol.
2015, no. 1, pp. 1–14, 2015.

[4] “Waze Beacons.” [Online]. Available: https://www.waze.com/en/beacons
[5] I. Belhajem, Y. B. Maissa], and A. Tamtaoui, “Improving low cost sensor

based vehicle positioning with machine learning,” Control Engineering
Practice, vol. 74, pp. 168 – 176, 2018.

[6] J. B. P. Neto, N. Mitton, M. E. M. Campista, and L. H. M. K. Costa,
“Dead reckoning using time series regression models,” in Proceedings of
the 4th ACM MobiHoc Workshop on Experiences with the Design and
Implementation of Smart Objects, ser. SMARTOBJECTS ’18. New
York, NY, USA: ACM, 2018, pp. 6:1–6:6.

[7] H. Ahmed, M. Tahir, and K. Ali, “Terrain based gps independent lane-
level vehicle localization using particle filter and dead reckoning,” in
2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Sep.
2016, pp. 1–5.

[8] “Controller Area Network (CAN) Implementation Guide – Analog
Systems,” 2017. [Online]. Available: http://www.analog.com

[9] A. Daiss and U. Kiencke, “Estimation of vehicle speed fuzzy-estimation
in comparison with kalman-filtering,” in Proceedings of International
Conference on Control Applications, Sep. 1995, pp. 281–284.

[10] M. Grewal, L. Weill, and A. Andrews, Global Positioning Systems,
Inertial Navigation and Integration. John Wiley & Sons, Inc., 2001.

[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning - Data Mining, Inference and Prediction. Springer, 2009.

[12] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms, Society for Industrial and Applied
Mathematics, 2007.

[13] D. Luxen and C. Vetter, “Real-time routing with openstreetmap data,”
in Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ser. GIS ’11. New
York, NY, USA: ACM, 2011, pp. 513–516.

[14] “OpenStreetMap.” [Online]. Available: https://www.openstreetmap.org


